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The mechanics of an organized wave in 
turbulent shear flow. Part 3. Theoretical models and 

comparisons with experiments 
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The dynamical equations governing small amplitude wave disturbances in 
turbulent shear flows are derived. These equations require additional equations 
or assumptions about the wave-induced fluctuations in the turbulence Reynolds 
stresses before a closed system can be obtained. Some simple closure models are 
proposed, and the results of calculations using these models are presented. When 
the predictions are compared with our data for channel flow, we find it essential 
that these oscillations in the Reynolds stresses be included in the model. A simple 
eddy-viscosity representation serves surprisingly well in this respect. 

1. Recapitulation 
In  this paper we summarize the theoretical work associated with our experi- 

mental studies of organized waves in turbulent shear flows (Hussain & Reynolds 
1972, hereafter referred to as 11). Motivations for this work were elaborated 
previously (Hussain & Reynolds 1970a, hereafter referred to as I), and include 
interest in possible wave theories of turbulent shear flow (Landahl 1967). This 
work is described in more detail in our report Hussain & Reynolds (1970b), here- 
after referred to as R. 

The experiments reported in I1 deal with two-dimensional waves introduced by 
vibrating ribbons in a fully developed turbulent channel flow. The ribbon- 
induced streamwise velocity component GI was measured using a hot-wire anemo- 
meter and special signal-averaging techniques; these data form the basis for 
comparison with the models to be discussed here. 

In  both the theory and experiment we represent a fluctuating signal by 

f = f+f+f’, (1.1) 

where f is the mean (time-averaged) contribution, f” is the periodic wave and f’ 
corresponds to the turbulent motion. Straightforward time averaging deter- 
minesf. Then, the phase average, i.e. the average over a large ensemble of points 
having the same phase with respect to a reference oscillator (e.g. the vibrating 
ribbons), is (see I) 

(f) = f+f. (1.2) 

t Present address : Department of Mechanical Engineering, University of Houston, 
Houston, Texas. 
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In  effect, the phase-averaging process rejects the background turbulence and 
extracts only the organized motions from the total signal. Some useful properties 
that follow from the basic definitions of time and phase averages are 

- - 

(1.3) 

(f') = 0, f= 0, f ' =  0, 

5 = A 7 7  (fig) = f" ( s )7  <El> = m 
(5 =.K (f) =.f, fT= (@) = 0. 

The first relation states the ramdom nature of the background turbulence and the 
last that the background turbulence and the organized periodic (wave) motion are 
uncorrelated. These relations hips are invoked in the derivation of the dynamical 
equations for the organized wave. 

2. Dynamical equations for the organized motion 
We start with the Navier-Stokes equations in normalized form; the length 

scale is 6, the velocity scale is U, and the Reynolds number is V,S/v.  For incom- 
pressible constant-property flow, the continuity and momentum equations may 
be written using the summation convention as 

aU,px, = o 
and 

(2 .1a)  

(2 . lb )  

Following the decompositioii outlined above, we write velocity and pressure 

u, = Ti, + G, + u;, (2 .2a)  fields as 

p = j3+@+pf .  (2.2b) 

On substituting (2 .2a)  into ( 2 . i a ) ,  time averaging and then phase averaging, 
the component continuity equations are found to be 

aiii six, au; 
ax, ax, axi 

= - -  - 0. _ -  -- 

After substituting (2.2) into (2.1b) and phase averaging, one finds 

(2 .3a ,b ,c )  

ac, - au, - a ~ .  au, a a 
at 2 ax, 3 ax, 3 ax, ax, ax, 
- + u .  - + u .  + c. -+- (u;.;) +- (EiG,) 

The time average of (2.4) gives the equations for the mean field: 

The last term, involving the Iteynolds stress - w, of the wave-induced motion, 
makes the equation different, from the usual mean equation for turbulent flow 
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and gives the effect of the waves on the mean flow. Subtracting (2.5) from (2.4) 
gives the dynamical equations for the organized wave: 

__ 
-- a ( (u~u;}  -u;u;). (2.6) ax, 

Equations (2.3b) and (2.6) together describe the organized wave, However, in 
(2.6) there appears a term __ 

P i j  (u; u;> - u! z u! 3' (2.7) 

which is not known. Since this term is the difference between the phase and time 
averages of (minus) the Reynolds stress of the background turbulence, one can 
look upon - Pi, as the oscillation of the background Reynolds stress due to the 
passage of the organized disturbance. Since we as yet have no way of finding a 
suitable expression for f,, or of relating Pi, to G, we have a closure problem in the 
equations for the disturbance. 

Some insight into the behaviour of f,, can be obtained from its dynamical 
equation; this we develop from the dynamical equations for the turbulence 
component, obtained by subtracting (2.4) from (2.1 b ) ,  which gives 

apt 1 azu; a 
axa Re ax$ ax* axj 

= -- +--+- ((u:u(~)-u:u~). (2.8) 

Now, on multiplying the u; equations by u;, the ui equation by u;, adding to 
obtain a dynamical equation for u;ui and taking the difference between the time 
average and the phase average of the resulting equation, the dynamical equation 
for ?*, is found to be 

The closure problem is now even more serious, for (2.9) contains many new terms 
that are unknown. Note that at least the third, sixth and seventh terms are of 
the same order of magnitude as the organized motion (i.e. O(Gi) ) ,  so that even for 
weak organized motions one should expect oscillations in the p,, of comparable 
magnitude. The chief value of (2.9) is in support of the contention that the Pi* 
should not be neglected in the solution of (2.6). 
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3. Energy considerations 
In  spite of the fact that the wave equations are not closed, considerable insight 

can be obtained from consideration of the energy transfer between the mean, 
wave-induced and fluctuating fields. In  a turbulent shear flow there is continuous 
dissipation of turbulent kinetic energy into internal thermal energy and con- 
comitant transfer of turbulent energy from the mean field ('production ') for 
replenishment. There is also continuous diffusion of turbulent kinetic energy by 
fluctuating motions. The travelling perturbation wave will presumably distort the 
turbulent field and thus alter the energy budget. 

The average kinetic energy per unit mass a t  a point is 
- _ _  

lU.T. 2 2 %  = LG 2 i i  u +'&.4 2 z i  +-u u! (3.1) 
Equations for the three com.ponents of the total kinetic energy can be obtained 
by multiplying the momentum equations for Ui, Ci and ui by ui, Gi and u; respec- 
tively, phase averaging and then time averaging. One may write the result as 

-__- 
ac, a r.- 

- ( - (u;.:;)) -- - [ui(u;u;)] ax, axj 
i a  aci ac. 

- 
D -  a -  __ aai 

axj a 9 ax, ot (4U;u;) = - - [u;(pf + gu;u;)] + ( - u! u!) - 

where (3.2d) 

The term on the left-hand side of each of the above equations denotes the net rate 
of increase of the energy component, and the terms on the right describe the 
mechanisms governing this change. 

Let us focus our attention on the right-hand side of (3.2 b) ,  which describes the 
change in the kinetic energy of the organized wave. The first, fourth and fifth 
terms will vanish upon integration over a large volume of the flow, and hence 
represent transport of energy within the flow. The last term represents viscous 
dissipation of the organized. motion. The second term, 

( - cicj) auipx,, (3.3a) 
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represents the production of disturbance energy by action of the mean field Ei 
against the wave Reynolds stresses ( -iiiiii). Note that this term appears as an 
energy drain in ( 3 . 2 ~ ) .  The third term in (3.2b) may be written as 

- 

and represents a drain of energy to the turbulence field by the action of the wave 
field at against the perturbations in the background Reynolds stresses ( - f i j ) .  
Note that this term appears as an i npu t  term in ( 3 . 2 ~ ) .  

It is likely that, over most of the flow, (3.3a, b )  are the two dominant terms in 
the energy balance for the organized motion. The wave tries to sustain itself with 
its own Reynolds stresses, but is broken down by the change that the wave itself 
produces in the background turbulence. This emphasizes the importance of F t j  
in governing the behaviour of the organized wave. 

4. Linearized equations for parallel flows 
In  a linearized analysis we neglect the terms quadratic in iii in the momentum 

equations (2 .6) ,  but retain Pir because we expect it to be of importance even at first 
order. Consider now a parallel mean flow, statistically homogeneous in the 
streamwise (x,) andspanwise (x3)  directions, i.e. Tii = [E(x2) ,  0, 01. The coefficients 
in the linearized equations for Ci depend only upon 2, and hence yield normal- 
mode solutions which are exponential functions of x1,x3 and t (Lin 1955, $1.3). 
One can therefore seeknormal-mode disturbance (wave) solutionsfor each variable 
f of the form 

f = i [ j (z2)  ei(azi+lzs-wt) + conjugate]. (4.1) 

Herefrepresents the complex amplitude of the quantityf, a and p are the stream- 
wise and spanwise wavenumbers respectively, and w is the frequency of the 
oscillating disturbance. We are here interested in the cases in which /3 and w are 
real and a is complex. Hence the wave speed c is complex. Equation (4.1) repre- 
sents a wave travelling obliquely to the main flow at an angle tan-l(p/a,) to the 
xg direction. At any point the disturbance oscillates with frequency w .  The 
disturbance appears as a wave travelling downstream with speed V,  = wla,, with 
amplitude decaying in the streamwise direction like exp (-six). 

On substituting (4.1) for each of the oscillating quantities in (2.3b) and (2.6), 
one obtains the following set of coupled differential equations for the perturbation 
wave amplitudes: 

iaa, -k 04, + i/3Q3 = 0, ( 4 . 2 ~ )  

( - i ~ + i a E )  12;) a, +DU (fi 0 = ( : ; ; )+&(D2-a2-p2) [ ; )  

j, - ipfj 
iaP1, + DP,, + ipP13 
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FIGURE 1. Comparison with data of (a)  a, and (a) ab for different models. [7, model (i); 
a, model (ii); 0, model (iii); +, model (iii), antisymmetric; 0 ,  data. 
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FIGURE 2. c, for different models compared with data. Notation as in figure 1. 

where D = d/dx2. The above equations differ from the similar equations for 
perturbation waves in laminar shear flow by the addition of the terms arising 
from oscillating Reynolds stresses. These equations do not form a closed set, for 
the P$i terms are as yet unspecified. 

A transformation in the spirit of Squire (Lin 1955,s 3.1) may be used to simplify 
the problem. We let 

(4.3) 

( 4 . 4 a )  
It is assumed that Pij will be compatible with such a transformation. Substitution 

I a2+P2 = k2, aal+/3&, = k0, 6, = 0, c = @/a, 

aP12 +@23 = Jcshl2, 

"911 + 2@?13 + P933 = k2811, $22 = $22. 

of (4 .3 )  in (4 .2)  gives ika  +DO = 0, 

ia(E-~)h+(DTi) - 8  = - ik f j+ -  (D2-k2)a-ik&,-D212, a 1 
k Re (4.4b) 

1 
ia(Ti - C )  0 = - Dfj + - ( 0 2  - k2) 8 - i a 2 1 2  - D822. ( 4 . 4 4  

R e  

Equation (4 .4b)  results from multiplication of (4 .2b)  by a and ( 4 . 2 d )  by P, 
adding, and dividing by k. Note that (4.4) are of the same form as (4.2) for 
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0 1 0 

YlS 
FIGURE 3. (a) d amplitudes and (b )  corresponding d phase distributions 

at  Re, = 12200 for model (i). 

/3 = t13 = P, = 0. In  a sense, we have reduced the oblique wave problem repre- 
sented by (4.2) to an equivalent two-dimensional wave. This view of the trans- 
formation is only correct for real a, which is not the case of interest here. The 
transformation remains valid for complex a even though the interpretation does 
not. 

We now substitute (4.4~) in (4.4b) and then eliminate @ to obtain a single 
fourth-order ordinary differential equation satisfied by 6: 

a[(v- c) ( 0 2  - k2) - 02 i i [ l8  = - (i/Re) (D2 - k2)23  
+ik2D(s^,,-s^2z) +k(D2+k2)SI2. (4.5) 

This equation differs from the Orr-Sommerfeld equation (Lin 1955) in the 
addition of the oscillating Reynolds stress terms 3ij .  To solve this equation, one 
still needs a closure assumption for f i j  to fix &. It should be mentioned that the 
two-dimensional problem hias been developed directly by Phillips (1967, 94.3 
et seq.) in connexion with the generation of ocean waves by wind. 

The boundary conditions on the wave field are 
'c"c, = 0 at solid boundaries, 
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which gives v" = Dv" = 0 at solid boundaries. (4.6) 
Equations (4.5) and (4.6): together with equations relating the 3$j to 8 and its 

derivatives, form an eigenvdue problem of the Om-Sommerfeld type. Here we 
regard o as fixed and treat a as the complex eigenvalue with 6(y) as the eigen- 
function. The response of the flow to a vibrating ribbon constitutes an initial- 
value problem for which the solution would be expressed as an expansion in terms 
of the eigensolutions. Hence:, the eigensolutions are of primary interest. 

5.  Some possible closuret schemes 

associated work. The simplest is the quusi-laminar model, in which we set 
Several possible closure schemes were investigated in connexion with this and 

f i i  = 0 (5-1) 
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FIGURE 5. (a )  First mode Zi and amplitudes and (b )  corresponding .Ci (-) and 

2 (- - -)phase distributions at Re, = 12 200 for model (ii). 

but use the mean velocity field ii appropriate to turbulent flow in the Orr- 
Sommerfeld solution. This is equivalent to assuming that the turbulence affects 
the wave only indirectly, through the mean velocity profile, and not directly, 
through its stresses. 

A second model, which is more successful, might be termed the Newtonian 
eddy model. Use of this model was originally motivated by the remarkable 
success that it enjoys in the ,prediction of weakly strained turbulent shear flows, 
such as the far field in jets and wakes. Recently it has been given a more sub- 
stantial analytical basis. The model goes back to Townsend (1956), who suggested 
that persistently strained turbulence should develop an equilibrium structure 
that depends only on the type of strain and not upon the strain-rate magnitude. 
This notion of an equilibrium structure has been widely accepted and given 
various physicalinterpretations. Eighthill ( 1956) proposed a constitutive equation 
for the turbulence structure, based on Townsend’s data: 
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FIGURE 6. (a )  Second mode ci and amplitudes and (b)  corresponding 4 and 

distributions at  Re, = 12200 for model (ii). Notation as in figure 5. 
phase 

where xii = azilaxj -+ aqax i .  (6.3) 

u; u; = &q26,  - uq2t*sii, (5.4) 

A somewhat different view was taken by Lumley (1967a), who suggested that 
__ 

where t" is a time scale of the turbulence. The difference between (5.2) and (5.4) 
is critical when one proposes (equations for the disturbances Fij, Suppose we assume 
that the wave causes oscillation in the structure of the turbulence but not in its 
energy (q2).  Then, on replacing Sij by (Sij) and UIUJ by (u;uJ), (5 .2 )  gives 

__ 

Now, in a parallel shear flow, where 

( 5 . 5 )  gives 

(5 .6 )  
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0 1 .o 0 1.0 

Y P  YlS 
FIGURE 7. (a)  First mode Zi and 2 amplitudes and (b)  corresponding Zi and 3 phase 

distributions a t  Re, = 12200 for model (iii). Notation as in figure 5 .  

Note that this model predictl., no oscillation in the primary shearing stress, i.e. 
f 1 2  = 0. This does not seem very reasonable; moreover, (5.6) does not pass through 
the Squire transformation (4.3), and hence is rather inconvenient. On the other 
hand if we use (5.4) and argue that neither the turbulence energy nor time scale is 
oscillated by the wave, we instead obtain - 

f i j  = -ap2t*Sij, (5.7) 

which seems more reasonable and does conform to the Squire transformation. 
Further basis for (5.7) is provided by Lumley’s (19673) development? of the 

7 Slightly modified in a footnote on page 416 of Lumley (1971). 
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general functional form of Ijhe Reynolds stress deformation behaviour for a 
turbulence field with fading memory and limited awareness. By carrying out an 
expansion in terms of a memory parameter and spatial-awareness parameter, he 
showed that the first departure from isotropy is due to the inhomogeneity in the 
strain rate and that 

u;u; = +q2?Iij - 2eSij + second-order term in awareness and memory parameters. 

Presumably, if the strain-rate inhomogeneity is of sufficient scale and its rate of 
change is sufficiently slow, (5.7) will be a good approximation. Hence e is a para- 
meter of the turbulence, which Lumley identifies as 

__ 

Expanding (5.8), again assuming that q'2 is not caused to oscillate by the wave, 
we have - 

Fij = -2esij, (5.9) 

which is of course equivalent to  (5.7). Equation (5.9) is called the Newtonian eddy 
model; it is equivalent to a constitutive equation relating the Reynolds stress 
oscillations to the oscillating strain rate through a scalar eddy viscosity. In  view 
of the discussion, we might expect (5.9) to work best for relatively low frequency 
weak oscillations, having a wavelength considerably larger than the dominant 
scales of turbulence. The experiments reported in I1 are of this nature. The 
notion of an equilibrium structure that underlies (5.4) has recently been de- 
molished by Lumley (197 l) ,  who showed that persistently strained homogeneous 
turbulence will never attain an equilibrium structure. Clearly, (5.9) must be 
regarded as a model to be t&ed rather than something physical, and we shall 
study it in this spirit. 

Some thought and analysis has been devoted to more complicated closure 
models. One possibility is to use (2.9) as a basis, neglecting all the terms that 
cannot be represented in terms of 6, and iij, and neglecting nonlinear terms. Then, 
upon introduction of the wave decomposition for parallel flows, one obtains 

k8k1  

b ( U  - C )  p.jj + $2 DF12 + ? j ;z  DUS,, + Pi2  DUSj, + Fjk D8k2 $i 

k8kl  ( i p 8 k )  

(ib8k) Re 

1 
+?ik D8k2 Qj = -(D2-k2)?ij, (5.10) 

where Fij = u x E q u a t i o n  (5.10) can be carried through the Squire transfor- 
mation and then, in conjunction with (44, yields a tenth-order system. Asymp- 
totic analysis of this system indicates extremely rapidly growing solutions away 
from the critical layer (the poin t where ii = c). In  addition, if the viscous terms are 
neglected (5.10) is singular at the critical layer and this singularity is stronger than 
in conventional Orr-Sommer6:ld problems. Some numerical calculations based 
on (5.10) were actually carried out using a two-level filtering technique (Lee & 
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Reynolds 1967) and special integrating algorithms. Crow (private communication) 
correctly criticized this approach on the grounds that the pressure-velocity term 
contains a first-order term that is probably of considerable importance but is not 
included in (5.9); further exploration of this model was then abandoned. It would 
be interesting to try one of the better turbulence model equation systems 
currently being developed for steady turbulent flows (Reynolds 1972), but as 
yet this has not been attempted. 

6. The wave equation 
On using (5.9), (4.5) becomes 

a[(E - C) ( 0 2  - k2) - D2U] 0 = - (i/R) ( 0 2  - k2)2 a - iE(.D2 - k2)2 8 
- 2ipE) (03 - k 2 ~ )  a - i p E )  (P+ k2) a. (6.1) 

Here E is the local eddy viscosity of the basic flow, normalized using the reference 
length and velocity: E = E/(U,S)  = l/RE, 

where R,is a reciprocal Reynolds number based on eddy viscosity. Equation (6.1) 
is precisely the Orr-Sommerfeld equation for a fluid with a prescribed local 
viscosity (Betchov & Criminale 1967). In  typical turbulent shear flows R,is of the 
order of 10-100, while R ismuch larger, hence the turbulence terms will certainly be 
very important. In  ordinary viscous flows the effects of viscosity are concentrated 
near the wall and near the critical layer in regions of the order of (aR)-QG in thick- 
ness. At high Reynolds numbers these layers are very thin, and this has served as 
the basis for various approximate treatments. The effect of the turbulence terms 
will be of order (aR,)-h3, which in many problems will constitute a significant 
portion of the total flow field. These considerations indicate that the ‘inviscid’ 
theories are not likely to be reasonable models for organized waves in turbulent 
shear flows. 

The mean velocity profile U and the corresponding eddy viscosity E must be 
specified before (6.1) can be solved. Our experiments dealt with two-dimensional 
channel flow, for which we have previously used a convenient expression for the 
eddy viscosity (Reynolds & Tiederman 1967): 

Here Re, is Um6/e, where U, is the average velocity in the channel (continuity 
average) and 6 is the channel half-width, and y is the distance from the wall ( x 2 ) ,  
normalized with 6. Our experiments (I, 11) correspond to Re, = 12 200, for which 
all of our calculations were made. The parameters A+ and K may be freely varied. 
A+ is the constant in Van Driest’s wall law characterizing the thickness of the 
wall-layer flow co-ordinates, and K is the von K k m h  constant. B = -dP,/dx 
(normalized) must be calculated. The momentum equation is (normalized using 
U ,  and 6 )  
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FIGURE 8. (a) Second mode zi and 6 amplitudes and ( b )  corresponding ti and fi phase 

distributions at Re, = 12200 for model (iii). Notation as in figure 5. 
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FIGURE 8. (a) Second mode zi and 6 amplitudes and ( b )  corresponding ti and fi phase 

distributions at Re, = 12200 for model (iii). Notation as in figure 5. 

Integrating twice yields 

U(Y) = Re,BJ; 1 dY,. 

For given Re,, A+ and K ,  (6.3) fixes E,  and (6.4) gives U for a trial value of B. 
B must then be adjusted to give the proper mean velocity, i.e. until 

I = jol qY)ay. (6.5) 

The B iteration is rapidly convergent. Once B is known, U, e and their derivatives 
can be readily calculated. A number of trial calculations were made with different 
values of A+ and K and the calculated U(y) were compared with the measured 
profile (see I). The best fit was obtained with A+ = 29 and K = 0.45, and these 
values were used in the calculations. For comparisons with our experiment see R. 

In  the calculations outlinlsd above, and in the solution of (6.1), avariable y mesh 
was used. The mesh consisted of eight parts, each having 50 points, with the 
spacing doubling between adjacent parts. Values of ii, E and their derivatives 
were precomputed at  each mesh point for use in the solution of (6.1). The solution 
of (6.1) could employ smalller mesh steps if necessary, interpolating to obtain 
t and E at intermediate points. 
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0 0.5 1.0 

Y P  
FIGURE 9. (a )  Zi amplitudes and ( b )  phase distributions for the two-mode superposition. 

w = 3.0, Re, = 12200; -, x//i = 4; -- , XIS = 6, - - - - - -, X I S  = 8; -*-, X I S  = 10; 
...... , X I S  = 12. 

The solution of (6.1) was carried out over half the channel, using either sym- 
metric or antisymmetric boundary conditions (for 8) a t  the channel centre-line. 
Experience with laminar f low suggested that the symmetric eigenfunctions would 
be most interesting, so both the experiments (11) and calculations concentrated 
on symmetric eigensolutiona. Starting with a trial value for the eigenvalue a, two 
linearly independent solutions to (6.1 ), each satisfying the centre-line boundary 
conditions, were constructed by numerical integration towards the wall. The 
Kaplan filtering technique (Lee & Reynolds 1967) was used to maintain linear 
independence. Once the wall had been reached, a properly normalized linear 
combination of the two solutions that satisfied one of the wall boundary con- 
ditions was formed. Then, t;he calculation was repeated with adjusted values of 
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FIGURE 9 ( b ) .  For legend see facing page. 

the eigenvalue a until the second wall boundary condition was also satisfied. The 
eigenfunctions were normalized to make the value of 0 at the centre-line equal 
unity (or the value of DO unity for antisymmetric disturbances). With 0 known, 
the streamwise component a was calculated from ( 4 . 4 ~ ) .  All calculations were 
done in FORTRAN using the automatic complex arithmetic provisions. The 
program used was a simple adaptation of ORRSOM (Reynolds 1969) and is given 
in 3%. 

7. Computational results and comparisons with experiments 
Detailed calculations were made for the following three models. (i) Quasi- 

laminar (E  = 0). (ii) Constant g(  = &), corresponding to E = e/v = 40. 
(iii) Variable g (  = E(y)) calculated using (6.2). For all calculations ,8 = 0 so a = k, 
to correspond with the two-dimensional waves studied in the experiments. I n  
these calculations, and in the comparisons with the data, the parameters were nor- 
malized using the average velocity Urn and the channel half-width S. For this flow, 
U,, the centre-line velocity used in the normalizations in 11, was 1. 14Um. Figure 1 
shows the calculated eigenvalue a as a function of the (dimensionless) frequency. 
For given frequency w, there are presumably an infinite number of eigensolutions 
having different eigenvalues. We chose to rank the eigenfunctions according to 
the value of a$; the ‘least-damped’ mode (with smallest ai) is designated the first 
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mode, etc. For most frequencies the eigenvalue search yielded two modes, 
designated by 1 and 2 in figure 1 (b) .  Note that the values of a, for the two modes 
were nearly identical (figure 1 (a) ) .  

The wavenumbers for particular frequencies, as predicted by the three models, 
are quite similar (see figure 1 (a) ) .  Note that there is very little difference between 
models (ii) and (iii), and that these models predict wavenumbers slightly lower 
than those predicted by the quasi-laminar model. The measured wavenumbers 
lie slightly above those predicted by models (ii) and (iii), and about the same 
amount below the quasi-la rninar predictions. Looking only a t  wavenumbers, 
one would not be able to select which of the models is best. 

The predicted attenuation factors ai are shown in figure 1 (b ) .  Considerable dif- 
ferences between the various models are evident here. The data suggest that the 
quasi-laminar model seriously overpredicts ai, by as much as a factor of three. 
The models that  include some turbulence effects seem to do better, but neither is 
really very satisfactory. 

The predicted and measured values of c,, which for small ai/ccT are approxi- 
mately equal to the wave speed V ,  (see 11), are shown in figure 2. Note that the 
quasi-laminar model predicts a decrease in c, with increased frequency, while the 
turbulent models and the diata show an increase in C, with increasing frequency. 
This comparison again suggests that the quasi-laminar model is not very ade- 
quate; however, the turbulent models predict speeds that are somewhat too high, 
suggesting there is considerable room for improvement in the theory. 

The amplitude and phase of the .ii component of the eigenfunctions are shown for 
several frequencies in figures 3-8. Figures 3 and 4 show the quasi-laminar eigen- 
functions, which are strongly peaked near the wall and exhibit rapid phase 
oscillations particularly a t  the higher frequencies. These predictions should be 
compared with the corresponding experimental amplitudes and phases shown in 
11. I n  particular, the phase oscillations exhibited by the quasi-laminar model are 
not evident in the data, and the amplitude distribution of the quasi-laminar 
model seems to be too strongly peaked. This comparison is perhaps the strongest 
evidence supporting rejection of the quasi-laminar model. 

The nature of the eigenfimctions for the simple turbulent model (ii) shown in 
figures 5 and 6 bears a much closer resemblance to the experiments. Note that the 
amplitude distributions are much flatter and the phase distributions do not have 
the wild oscillations exhibited by the quasi-laminar model. The more complicated 
eddy-viscosity distribution does not produce any qualitative difference; the 
predictions of model (iii) (see figures 7 and 8) are seen to be quite similar to those 
of model (ii) (see figures 5 and 6 ) .  

It must be remembered that the predictions so far deal with single modes. For a 
single mode, the shape of the amplitude and phase curves should be unchanged in 
the streamwise direction. The data (11) show significant changes in both, parti- 
cularly close behind the vibrating ribbon. This suggests that the ribbon excites a 
superposition of a t  least two modes, which attenuate a t  their own rates in the 
streamwise direction. I n  order to look at this problem theoretically, we made a 
superposition of the first and second modes from model (ii) at w = 3, which 
corresponds to  something kietween the 75 and 100 Hz data given in 11. At both 
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frequencies the data show a strong dip and phase reversal at  a point near the wall, 
and the dip gradually is ‘filled in’ at  the stations downstream. Given two modes, 
one can of course combine them to place a zero amplitude point anywhere in the 
flow, and we computed the result of such a combination that has the two peaks of 
about the right initial amplitude on either side of the initial dip. The results are 
shown in figure 9. Note that this two-mode combination indeed exhibits the 
qualitative features of the measured data. The amplitude and phase curves are 
not self-similar, but become more so further downstream (where the second mode 
decays more rapidly that the first). The dip is gradually ‘filled in’, and the peaky 
structure gradually disappears. This calculation provides strong support for the 
notion that the ribbons excite multiple wavenumbers at a given frequency and 
that the properties of the fundamental pure mode must be estimated from the 
data recorded far downstream of the vibrating ribbon. 

8. Conclusion 
The comparisons between our experiments and model calculations indicate 

rather conclusively that the quasi-laminar model, in which the influence of the 
organized wave on the background turbulence is neglected, does not adequately 
describe the behaviour of waves in turbulent shear flow. It seems absolutely 
essential to include a term representing the wave-induced oscillations into the 
background turbulent stresses. A simple model that seems to possess many of the 
proper qualitative features is the Newtonian eddy model, and the use of a constant 
eddy viscosity in this model gives results that are not substantially different 
from those obtained with the ‘ actual ’ variable eddy viscosity. None of the models 
investigated to date are quantitatively very adequate, and there is need for a 
better model. The development of a more satisfactory model would be facili- 
tated by direct measurements of the Fij; such measurements are presently being 
obtained a t  Stanford. 
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